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Observation of a candidate for the M1 scissors resonance in odd-odd 166Ho
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The γ -strength function and the nuclear level density for the odd-odd, rare-earth nucleus 166Ho have been
extracted from 163Dy(α, pγ ) 166Ho data using the Oslo method. A structure at ≈3 MeV in the γ -strength function
is interpreted as the M1 scissors resonance. By employing three different methods we find that its strength
depends rather strongly on the modeling of the E1 strength, while its centroid does not. The 166Ho scissors
resonance parameters are consistent with previous results on other rare-earth nuclei.
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I. INTRODUCTION

Our understanding of the response of rare-earth elements
to electromagnetic radiation is far from complete. This region
of the nuclear chart is interesting because of the variety in
deformation (from close-to-spherical to well-deformed pro-
late shapes [1]), and it is an ideal region for studying nuclear
statistical properties (see, e.g., Refs. [2–6]).

The scissors resonance (SR), also called the scissors mode,
has received much attention over the years. The SR was orig-
inally predicted to be originating from neutrons and protons
oscillating against each other like scissor blades in deformed,
rotational nuclei [7], but is now understood as a coherent
contribution from single-particle couplings between orbitals
of the same angular momentum � and j centered at around
Eγ = 3 MeV [8]. While the SR has been observed in many
even-even and odd-even nuclei (see, e.g., Refs. [6,8]), it has
not yet been studied thoroughly in odd-odd ones, with the no-
table exception of the two-step cascade experiment on 160Tb
by Kroll et al. [9].

While many studies have been carried out using the nuclear
resonance fluorescence (NRF) technique (see Ref. [8] and
references within), this technique has usually been applied in
the low excitation-energy region. Counting individual states
and transitions becomes increasingly difficult when the den-
sity of energy levels increases. To account for the apparent
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missing strength in odd-A nuclei, Huxel et al. [10] applied
a statistical analysis in the case of 165Ho and 169Tm. With
such an approach, they were able to obtain an integrated
upwards B(M1) ↑ strength of ≈3 μ2

N , in good agreement with
previous NRF results on well-deformed even-even nuclei in
the rare-earth region [11,12]. Also, Nord et al. [13] performed
experiments with even better resolution on the same nuclei
and thus an improved sensitivity for several odd-A rare-earth
nuclei. When the number of energy levels per excitation
energy bin ρ(Ex ) (or nuclear level density, NLD) becomes
larger than ∼50–100 levels per MeV, it is often more useful
to consider the statistical properties of the nucleus instead
of singular levels and decays. The nuclear excitation energy
region between Ex for which ρ(Ex ) > 50 MeV−1 and where
particles are still bound is called the quasicontinuum, and
two useful quantities here are the NLD and γ -strength func-
tion f (Eγ ), or GSF. The GSF is the statistical counterpart
of transition probabilities for the discrete region; it gives us
information on which γ energies the nucleus prefers to de-
cay with, and thus an insight into its internal structure and
collective modes. A puzzle that is still not fully solved is the
seemingly conflicting results on the integrated strength of the
SR obtained from different types of experiments. As already
mentioned, NFR experiments have revealed a total strength
of ≈3 μ2

N for well-deformed rare-earth nuclei. In contrast,
experiments utilizing the two-step cascade method following
neutron capture [14–16] have found about twice the integrated
strength, which is also the case for data analyzed with the
Oslo method [3,4,6,17–22]. One possible explanation for this
discrepancy is related to the different moments of inertia the
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FIG. 1. The (a) raw, (b) unfolded, and (c) first-generation matrices used in the Oslo method analysis. The x axis indicates the γ -ray energy
Eγ , while the y axis indicates the excitation energy Ex . The stapled lines indicate the Ex = Eγ diagonal and the neutron-separation energy
Sn = 6.244 MeV.

nucleus attains for ground-state excitations and quasicontin-
uum decay (for which in the latter case, many quasiparticles
are involved; see, e.g., Uhrenholt et al. [23]). If this is the case,
it would mean that the Brink-Axel hypothesis [24,25] is not
valid for the SR; i.e., its properties in the ground state are not
the same as those for excited levels. However, as discussed
in Ref. [6], there are many possible sources of uncertainties
when extracting the integrated SR strength, and they are per-
haps so significant that one should be careful making strong
conclusions as of now.

This work aims to further investigate the SR in rare-earth,
odd-odd nuclei through the data from the 163Dy(α, pγ ) 166Ho
experiment performed at the Oslo Cyclotron Laboratory
(OCL). Using the Oslo method, it is possible to simul-
taneously extract the NLD and the GSF from particle-γ
coincidences in charged reaction experiments. In this article,
the experimental setup and data analysis are described in
Secs. II and III, discussion on implications for scissors mode
is given in Sec. IV and a summary is given in Sec. V.

II. EXPERIMENTAL METHOD

The experiment was carried out at the OCL in April 2018
for a period of 6 days, where an α beam of 26 MeV and
≈3-nA intensity was impinged on a 163Dy self-supporting
target of 2 mg/cm2 thickness and 98.5% enrichment. The
Oslo Scintillator Array (OSCAR) and the silicon ring (SiRi)
detector arrays were used in order to detect the particle-γ
coincidences from the (α, pγ ) reaction. The γ rays were
detected by placing the targets inside OSCAR [26], an array
of 30 cylindrical (3.5”×8.5”) LaBr3(Ce) scintillator detectors
mounted on a truncated icosahedron frame, where 28 were
operational at the time of the experiment. OSCAR has an
energy resolution of 2.7% at Eγ = 662 keV and a typical time
resolution of the prompt timing peak of ≈1–5 ns. Particles
were detected using SiRi [27], a �E -E particle telescope
consisting of a ring of 8 silicon-telescope modules covering
126◦–140◦ in backwards angles (corresponding to 6% of 4π ).

Each of these modules consists of a thick (1550 µm) E back
detector, and a thin (130 µm) �E strip detector segmented in
8 parts in the front covering about 2◦ each, together forming
a system of 64 detectors. Using the �E -E technique, we
collect particle energy and timing information and represent
the event by plotting the deposited energy in the back detec-
tor versus the deposited energy in the front strip. This was
used in order to separate the various reaction channels and
select only the (α, p) data. Given the projectile and ejectile
energies, together with the known Q values of the reaction,
we are able to calculate the excitation energy of the residual
nucleus using the reaction kinematics. With this, an excitation
energy vs γ -ray energy matrix called the raw coincidence
matrix is obtained [see Fig. 1(a)]. From the raw coincidence
matrix, the primary γ -ray spectra for each excitation energy
can be obtained using the established methodology of the
Oslo method [28–30]. This is done by first deconvoluting [28]
the raw matrix using the response function of Refs. [26,31]
[see Fig. 1(b)] and then extracting the first-emitted γ rays in
the decay cascades through a subtraction technique (Fig. 1(c),
see Ref. [29]).

Assuming the validity of the generalized Brink-Axel hy-
pothesis [24,25], stating that the GSF is independent of initial
and final excitation energy, spin, and parity, we can extract the
NLD and GSF from the primary γ -ray matrix, also known as
the first-generation γ -ray matrix. The Brink-Axel hypothesis
has been tested for neighboring nuclei of dysprosium [6,32]
and is therefore expected to be applicable in this mass region.
Fermi’s Golden rule [33,34] allows us to apply the ansatz [30]

P(Eγ , Ex ) ∝ T (Eγ )ρ(Ex − Eγ ), (1)

where P is the probability for the excited nucleus to decay
from excitation energy Ex by emitting a γ ray with energy Eγ ,
ρ(Ex − Eγ ) is the level density in the final energy level, and
T (Eγ ) is the γ -transmission coefficient, from which one can
derive the GSF, denoted by f XL, through the relation

T XL(Eγ ) = 2πE2L+1
γ f XL(Eγ ), (2)
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for γ transitions of electromagnetic character X , multipolarity
L, and γ energy Eγ . The GSF is defined as [35]

f XL(Ex, Eγ , J, π ) =
〈
�XL

γ (Ex, Eγ , J, π )
〉

D(Ex, Eγ , J, π )E2L+1
γ

, (3)

where 〈�XL
γ 〉 is the average partial γ -decay width and D is

the mean level spacing. The average partial γ -decay width
is also directly connected to the transmission coefficient
by [36]

〈
�XL

γ (Ex, Eγ , J, π )
〉 = T XL(Ex, Eγ , J, π )

D(Ex, Eγ , J, π )

2π
.

(4)
By then combining Eqs. (3) and (4), we obtain

f XL(Ex, Eγ , J, π ) = T XL(Ex, Eγ , J, π )

2πE2L+1
γ

. (5)

By applying the generalized Brink-Axel hypothesis [24,25],
the dependencies on Ex, J , and π are averaged out; i.e., the
experimental γ -transmission coefficient represents an average
transmission coefficient for all the spins accessible in the
experiment, as well as for the excitation-energy range used
in the extraction procedure. At high excitation energies, the γ

transitions are dominantly of the dipole type (L = 1, see, e.g.,
Ref. [37]), and our experimental γ -transmission coefficient
can be approximated by

T (Eγ ) ≈ T E1(Eγ ) + T M1(Eγ ), (6)

and thus we obtain the simplified expression

f (Eγ ) = T (Eγ )

2πE3
γ

, (7)

where f (Eγ ) and T (Eγ ) now represent the average total
dipole GSF and γ -transmission coefficient, respectively. Us-
ing a χ2-minimization technique [30], it is possible to extract
simultaneously the NLD and GSF from the quasicontinuum
region in the first-generation matrix. For 166Ho, the region be-
tween Emin

x = 1200 keV, Emax
x = 6000 keV, and Emin

γ = 1350
keV was selected. This minimization technique is able to
determine the functional, un-normalized form of the NLD and
the GSF,

ρ̃(Ex − Eγ ) = Aeα(Ex−Eγ )ρ(Ex − Eγ ), (8a)

T̃ (Eγ ) = BeαEγ T (Eγ ), (8b)

meaning that any value combination for the parameters A,
B, and α would give a NLD and GSF pair compatible with
the experimental results [30]. In order to fix the values of
these three parameters, we have to normalize the two physical
quantities by using known experimental data.

III. NORMALIZATION AND UNCERTAINTY
PROPAGATION

A. Level density

The unnormalized NLD has two free parameters, A and
α, so we need at least two external data points in order
for these to be determined. Experimental values for the low

TABLE I. Parameters used for the NLD normalization. σ 2
I is

calculated using either the RMI model of Eq. (10) or the FG model
of Eq. (11), combined with the temperature expressions of either the
CFG formula of Eq. (12) or the AFG formula of Eq. (13). For both,
the values of a = 18.277 MeV−1 and E1 = −0.949 MeV for 166Ho
from the global parametrization of Refs. [40,41] were used. Finally,
ρ(Sn) was calculated for each σ 2

I using the expression given in Eq. (9)
where It = 7/2 and D0 = 4.35(15) eV [39].

ρ(Sn)
Model σ 2

I (×106 MeV−1)

RMI + AFG 6.93 3.28
FG + CFG 5.55 2.32

excitation-energy region in 166Ho can be obtained by using the
known discrete excitation-energy levels from Ref. [38]. In our
case we observe a good fit for the region between Ex = 0.26
and 0.74 MeV, which we use for our normalization. At high
excitation energies, we can calculate the total NLD value at
the neutron separation energy Sn by using the measured level
spacing D0 of s-wave neutron resonances from, e.g., Atlas of
Neutron Resonances [39]. We calculate the total NLD at Sn

by [30]

ρ(Sn) = 2σ 2
I

D0
[
(It + 1)e−(It +1)2/2σ 2

I + It e−I2
t /2σ 2

I

] , (9)

where It is the spin of the target nucleus and σI is the spin
cutoff parameter. The σI parameter must be estimated, which
means we must assume a model for the spin distribution.
Some well-known models include using the rigid-body mo-
ment of inertia (RMI) [40,41]

σ 2
I = 0.0146A5/3T (10)

and the Fermi gas (FG) model from Gilbert and Cameron [42],

σ 2
I = 0.0888A2/3aT, (11)

where A here is the nucleon number, a is the level density
parameter, and T represents the nuclear temperature. The T
parameter can be expressed by either the Gilbert and Cameron
approach (CFG) [42],

T =
√

U/a, (12)

or the formalism developed by von Egidy and Bucurescu
(AFG) [40,41],

T = 1 + √
1 + 4aU

2a
, (13)

where in both cases U = Ex − E1, where E1 is a shift pa-
rameter. The parameters a and E1 for 166Ho are calculated
using the prescription of Refs. [40,41]: a = 18.277 MeV−1

and E1 = −0.949 MeV for both models of the T parameter.
As we have no reason to prefer one model above the other,
we allow σ 2

I to vary between 5.55 and 6.93. These values are
listed in Table I. The chosen σ 2

I uncertainty limits are reason-
able when compared to the results of Uhrenholt et al. [23],
where a study on 162Dy shows that the ratio between the spin
cutoff parameter at Sn from their combinatorial method and
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the one calculated using the RMI model is 0.9, compared to
0.8 and 1.0 corresponding to the lower and upper limits we
have chosen for 166Ho.

Since any value between the two limits for σ 2
I is, in princi-

ple, equally possible, we assume that the ρ(Sn) error is flatly
distributed between the values obtained by using the two σ 2

I
values in Eq. (9), as shown in Table I. The edges of the flat dis-
tribution are then smoothed with a Gaussian with a standard
deviation calculated by propagating the uncertainties in the D0

parameter. We obtain thus a flatly distributed ρ(Sn) between
2.32 × 106 and 3.28 × 106 MeV−1, with a lower error of
0.08 × 106 MeV−1 and an upper error of 0.12 × 106 MeV−1.

Further, we need to extrapolate the experimental ρ(Ex ) data
to Sn. In order to do this, we have considered two models. The
first one is the constant-temperature (CT) model [42,43]:

ρCT(Ex ) = 1

TCT
exp

(
Ex − E0

TCT

)
, (14)

where E0 and TCT are parameters representing the energy shift
and the nuclear temperature, respectively. The second is the
back-shifted Fermi gas (BSFG) model [42,44]:

ρFG(Ex ) = exp(2
√

aU )

12
√

2a1/4U 5/4σI

, (15)

where σI is the spin cutoff parameter, a is the level-density
parameter, and U = Ex − E1, where E1 is the back-shift pa-
rameter. For convenience, we introduce an additional scaling
parameter η in order to make the model reproduce the ex-
perimentally derived ρ(Sn). For the best fit, η was found to
be 0.507. While the NLD normalization parameters A and
α are determined through the normalization procedure, the
choice between the CT or the BSFG model comes down to
the functional form of the experimental NLD data. While
the CT model has a simple, exponential shape, the BSFG
model is somewhat more curved due to the ∼√

Ex depen-
dence. In order to decide which NLD model describes the
experimental data best, we use an approach similar to that
used in Guttormsen et al. [45] for 164Dy. Here we run a χ2

test for each model, where the model parameters are allowed
to vary in order to minimize the χ2 score. While the parameter
values and the magnitudes of the χ2 scores depend on the
choice of A and α, the relationship between the χ2 scores
for the two models should not change, as this only depends
on the functional shape of the NLD. The test gives a better
χ2 for the BSFG model by a factor of 1.5; therefore, this
model is chosen for the extrapolation in the normalization
procedure. Using a technique similar to the one presented in
Ref. [46], we can propagate the normalization uncertainties to
the whole NLD. By generating different NLDs with different
combinations of the A and α parameters, we evaluate their
goodness-of-fit to the selected region at low excitation energy
and the calculated ρ(Sn) by estimating a χ2 score. For each
Ex bin, we have many different ρ(Ex ) values, each with an
associated χ2 score. By plotting the χ2 scores against ρ(Ex )
for each Ex bin, we can observe a parabolalike shape, from
which we can graphically estimate the mean value of ρ(Ex )
to be the one for which χ2 = χ2

min, and the associated un-
certainty where the χ2 = χ2

min + 1 line crosses the parabola

FIG. 2. The normalized NLD data points (see text). The un-
certainties in the data points show the statistical and systematic
uncertainties from the Oslo method analysis. In the total uncertainty
band the systematic errors from the normalization are included. In
panel (a), the normalized 166Ho NLD is shown together with the
fitting interval, the known levels, and the Fermi gas extrapolation to
ρ(Sn), while in panel (b) the same NLD is compared to the theoretical
models from TALYS 1.95 [47,48]. The values are given as number of
energy levels per MeV bin, where, e.g., the value at Ex = 2 MeV
indicates the number of energy levels in the 1-MeV Ex interval
between 1.5 and 2.5 MeV. This means that nonzero values for the
NLD are expected down to Ex = −0.5 MeV, the last one including
the ground-state level at Ex = 0 MeV.

(see Ref. [46] for details). The normalized NLD is shown in
Fig. 2.

B. Gamma strength function

For the GSF, the parameter B in Eq. (8b) is found
by normalizing it to the average total radiative width
〈�γ 〉 [32,49]. Experimental values for this quantity are avail-
able in Ref. [39], where for 166Ho we find 84 ± 5 meV.
The average total radiative width of s-wave neutron capture
resonances with spins It ± 1/2 expressed in terms of the
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FIG. 3. The normalized GSF data points (see text). Here we
include a comparison to the theoretical models (strength 1 to strength
8) used in TALYS 1.95 [47,48]. Uncertainties are displayed as in
Fig. 2.

experimental T is given by

〈�γ (Sn, It ± 1/2, πt )〉

= B

4πρ(Sn, It ± 1/2, πt )

∫ Sn

Eγ =0
dEγT (Eγ )ρ(Sn − Eγ )

×
1∑

J=−1

g(Sn − Eγ , It ± 1/2 + J ), (16)

where It and πt are the spin and parity of the target nucleus
in the (n, γ ) reaction, and ρ(Sn − Eγ ) is the experimental
level density. Here it is assumed that there are equally many
accessible levels with positive and negative parity for any ex-
citation energy and spin, and again that dipole radiation is the
dominant decay mechanism. Note that the factor 1/ρ(Sn, It ±
1/2, πt ) equals the neutron resonance spacing D0. By assum-
ing the uncertainty in 〈�γ 〉 to be normally distributed such that
the given number represents one standard deviation from the
mean, we can again use the same procedure as for the NLD
used in Ref. [46] to propagate these uncertainties to the GSF.
The results are shown in Fig. 3.

IV. RESULTS AND DISCUSSION

As anticipated from the NLD normalization discussed in
Sec. III, the experimental 166Ho NLD was found to be better
described by the BSFG model than by the CT model. In
Fig. 2 we present the normalized experimental NLD data
together with the six theoretical models provided in TALYS

1.95 [47,48], where ldmodel 1, ldmodel 2, and ldmodel 3
are phenomenological models, and ldmodel 4, ldmodel 5,
and ldmodel 6 are microscopical. For the three microscopi-
cal models the default values for c and δ were used, these
being the two parameters for which the models can be ad-
justed to data. Although none of the models fits perfectly,
we observe that the experimental data fall somewhat in the
middle of the different suggested models. Overall, our data

points behave rather smoothly, as can be expected for an
odd-odd nucleus with many available levels. In general, the
GSF shows various features with different electromagnetic
characters. Most notably for the energy region of this work
(Eγ ≈ 1 to 6 MeV), we expect the tail of the giant elec-
tric dipole resonance (GEDR, [50,51]), possibly the pygmy
dipole resonance (PDR), (both of E1 character [52,53]), the
spin-flip resonance, and the SR (both of M1 character [8]) to
be present. As the Oslo method does not separate between
E1 and M1 transitions, the GSF must be decomposed using
models and/or auxiliary data. Figure 3 shows the GSF plot-
ted together with the different theoretical models available
in TALYS. Our data points are not well reproduced by any
of the TALYS models, although an agreement when it comes
to magnitude can be observed with the microscopic Gogny-
HBF+QRPA model strength 8 [54]. Most of the models fail in
predicting enough strength to match the experimental results,
and none of them are able to describe properly the broad bump
centered around Eγ ≈ 3 MeV. The GSF in the Eγ < Sn region
is expected to be dominated by the tails of the GEDR and the
PDR, as observed in the neighboring dysprosium isotopes [6].
Another interesting feature is the broad, resonancelike struc-
ture centered around Eγ ≈ 3 MeV, which is a good candidate
for the M1 scissors mode. This is the first observation of the
mode in an odd-odd rare-earth nucleus with the Oslo method.
In order to quantify the observed structures, the experimental
GSF was decomposed into its constituent features. As for Dy
isotopes and other deformed, rare-earth nuclei, we expect the
GEDR of 166Ho to be double-peaked [50,51]. Experimental
GSF data for Eγ > Sn for 166Ho are not available, so data on
165Ho have been used. There are data in the literature for this
energy region from Berman et al. [55] and Bergère et al. [56],
but their measured cross sections differ considerably. In order
to resolve this conflict, a reanalysis of the two experiments has
been carried out by Varlamov et al. [57], and the data from this
re-evaluation have been used to model the E1 strength due to
the GEDR. In order to fit the GEDR, a generalized Lorentzian
(GLO) [37] is used:

f GLO(Eγ ) = σ0�0

3π2h̄2c2

⎛
⎝ Eγ �K(

E2
γ − E2

0

)2 + E2
γ �2

K

+ 0.7
�K,0

E3
γ

⎞
⎠,

(17)
where

�K (Eγ , Tf ) = �0

E2
0

(
E2

γ + 4π2T 2
f

)
(18)

and �K,0 = �K (0, Tf ). E0, �0, σ0, and Tf are fit parameters
representing the energy centroid, the width, the peak cross
section, and the temperature of the final levels, respectively.
The PDR and the scissors mode are fitted using a standard
Lorentzian (SLO),

f SLO(Eγ ) = 1

3π2h̄2c2

σs�
2
s Eγ(

E2
γ − E2

s

)2 + E2
γ �2

s

, (19)

where Es, �s, and σs are again free parameters corresponding
to the same quantities as for Eq. (17). In some other studies
of the rare-earth region (see, e.g., Ref. [6]), a second E1 PDR
was included in the fit, as well as the spin-flip M1 resonance.
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The GLO already gives us a good fit of the GEDR without
having to include these two structures, whose contribution is
only noticeable in the Eγ ≈ 10 MeV energy region, well be-
yond the range of this experiment. Our choice of fit functions
reduces considerably the number of free parameters used in
the fit.

Another interesting quantity to calculate is the experimen-
tal, integrated upward SR strength BSR, defined as

BSR = (3h̄c)3

16π

∫
fSR(Eγ )dEγ , (20)

where fSR is expressed by the fitted SLO in Eq. (19) to the
broad structure at Eγ ≈ 3 MeV. The result of the integration
depends on the chosen limits, which should vary according
to which work or experimental technique the result is to
be compared with. Many NRF experiments have limited Eγ

range and thus a smaller summed BSR. When it comes to
Oslo-method-like analyses, the decomposition of the GSF into
two GEDR peaks (henceforth GEDR1 and GEDR2), a PDR
and an SR, involves a series of challenges not only due to
the high number of parameters involved but also because of
the fact that OCL data cannot directly distinguish between
E1 and M1 radiation. This is a particular problem for the
SR, as its fit result is sensitive to the fitting parameters of the
underlying E1 strength. In this work we show how we can
attempt to solve these problems using three different methods.
This provides us with a comparison of the different methods,
as well as a tool in order to evaluate the uncertainties for the
resulting BSR. The first method (the “simultaneous fit”) is to
fit all of the structures (the two peaks of the GEDR, the PDR
and the SR) simultaneously. This gives the least χ2 score,
but also potentially underestimates the E1 strength yielding
a potentially too big BSR. The second method (the “two-step
fit”) involves a fit of the GEDR first and a subsequent fit of
the PDR and the SR by holding the newly found GEDR pa-
rameters fixed. This gives a higher χ2 score, but a BSR closer
to previously determined values in this mass region. One of
the most sensible parameters in the fit is the temperature T0.
In both methods, the fit was run by holding the tempera-
ture fixed to either T = 0.59 MeV or T = 0.66 MeV, these
corresponding to the calculated values from von Egidy and
Bucurescu [40] for the CT and BSFG models, respectively.
The resulting parameters from the first two fitting methods
are shown in Table II, where method 1 corresponds to the
simultaneous fit, method 2 corresponds to the two-steps fit,
and (A) and (B) both indicate whether the CT value or the
BSFG value for the temperature parameter was used. Figure 4
shows the obtained decomposition using method 2(A) as an
example.

The third method (the “exponential background fit”), used
among others by Nyhus et al. [4], Malatji et al. [60], and Ag-
vaanluvsan et al. [19] involves approximating the E1 strength
“background” as an exponential function of the form AecEγ ,
where A and c are parameters to be tuned to make the function
go through the two points estimated to be the end points of the
SR. When the background is subtracted, the excess strength
can be integrated numerically to find BSR (see Fig. 5). This
last method does not involve a fit to the SR and thus gives
no Es, �s, and σs parameters to compare to other works, but it

TABLE II. The parameters for the functions fitting the 166Ho
GSF (see text) Method 1 refers to the “simultaneous fit,” while
Method 2 refers to the “two-step fit.” The labels (A) and (B) refer
to the different choices in temperature.

T0 E0,s �0,s σ0,s

Method Function (MeV) (MeV) (MeV) (mb)

1(A) GEDR1 0.59 12.359(1) 3.35(3) 324(1)
GEDR2 0.59 14.78(1) 1.89(3) 189(2)

PDR 5.92(8) 1.96(12) 4.4(3)
SR 3.14(7) 0.98(9) 0.43(3)

1(B) GEDR1 0.66 12.341(1) 3.22(3) 330(1)
GEDR2 0.66 14.78(1) 1.89(3) 195(2)

PDR 5.58(40) 1.40(10) 3.8(3)
SR 3.18(7) 0.80(4) 0.44(3)

2(A) GEDR1 0.59 12.40(12) 3.50(4) 323(3)
GEDR2 0.59 14.80(15) 1.82(2) 183(2)

PDR 6.07(11) 1.89(3) 5.0(2)
SR 3.20(12) 1.00(30) 0.40(8)

2(B) GEDR1 0.66 12.38(12) 3.37(3) 330(3)
GEDR2 0.66 14.79(15) 1.82(2) 188(2)

PDR 5.48(17) 1.06(2) 4.1(9)
SR 3.29(12) 0.98(26) 0.43(8)

gives perhaps the most reasonable estimate for the lowest limit
of BSR. An argument in support of this third approach is that
the E1 modeling is not dependent on the description of the
GEDR peaks and the PDR, and also because an SLO fit may
not always be the best tool to describe a structure that is often
fragmented and not necessarily resonance-shaped. However,
the resulting integrated SR strength is indeed dependent on
the choice of the two points enclosing the SR structure used

FIG. 4. Decomposition of the GSF into its underlying structures,
using method 2(A), where the 165Ho data for Eγ > 6 MeV from
Varlamov et al. [57] were used to fit the double-peaked GEDR.
The dotted line is the theoretical prediction from the deformed-basis
QRPA calculations for M1 excitations on the ground state [58] and
is compared to the average resonance capture (ARC) data from
Ref. [59] for both E1 and M1 transitions.
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FIG. 5. The SR integrated strength evaluated by selecting the
energy range of the SR and modeling the E1 background as an
exponential going through the two outermost GSF points (see text).
Shown in black are the data from the present work, in red (dark gray)
the modeled E1 background as an exponential, and in blue (lighter
gray) the residual strength obtained by subtracting the E1 component
from the GSF data. This plot corresponds to the E1 fitting for method
3(B).

to fit the exponential background. Although the choice for the
upper limit might fall naturally in the “kink” of the GSF
at about Eγ ≈ 4 MeV, the lower limit is more difficult to
determine unambiguously. In order to reflect this uncertainty,
we have calculated BSR using two different exponential “back-
ground” fits, one choosing the first fitting point to be at Eγ =
1.6 MeV and the other at Eγ = 2.0 MeV. We denote these two
variants of the third method as method 3(A) and method 3(B),
respectively.

In Table III the fitting parameters for the different fits of the
SR are shown, together with the calculated summed strengths
BSR for both the integration range Eγ = 2.0–4.0 MeV (com-
parable to the one used in NRF experiments) and the
integration range Eγ = 0.0–10.0 MeV (for a more complete
BSR integration).

These results can be compared to those for neighboring
isotopes. As many other nuclei have been analyzed using the
Oslo method, we have the possibility to systematically study
the different centroids, widths, and peak cross sections of the
SR fitted by SLOs for the rare-earth region. In Fig. 6 are
collected the results for Nd [63], Sm [18,60–62,64], Dy [6],

TABLE III. The integrated SR strengths for both the Eγ = 2.0–
4.0 MeV range and the Eγ = 0.0–10.0 MeV range (see text).

Method B2.0−4.0
SR (μ2

N ) B0.0−10.0
SR (μ2

N )

1(A) 3.3(4) 4.2(5)
1(B) 2.9(2) 3.5(3)
2(A) 3.1(15) 4.0(15)
2(B) 3.2(10) 4.1(14)
3(A) 2.9(5) 3.0(6)
3(B) 3.1(6) 3.2(6)

FIG. 6. Plot showing the values of the SLO fitting parame-
ters for the SR collected for different deformed rare-earth nuclei
(Refs. [6,17–19,60–64]), where panel (a) shows the centroids, panel
(b) shows the widths, and panel (c) show the cross sections. Data ob-
tained using the Oslo method are shown with triangles and squares,
while a cross indicates another experiment modality (e.g., NRF).
The results from the present work are shown with empty and solid
circles.
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FIG. 7. In these graphs the SR strength BSR collected from Refs. [6,13,17–19,60,62–64] is integrated between two regions: Eγ = 2.0–4.0
MeV in panels (a) and (b), and Eγ = 0.0–10.0 MeV in panels (c) and (d), and is plotted against the mass number in panels (a) and (c) and
against the deformation parameter β2 in panels (b) and (d) (region where 0.32 � β2 � 0.35 in the smaller inset plots). Circles, triangles,
and squares indicate Oslo method data, and crosses indicate other experimental or analytical techniques (e.g., NRF). The data from Ziegler
et al. [64] are integrated between 0 and 5 MeV.

Er [17], and Yb [19], where the results from Ziegler et al. [64]
are results from a NRF experiment and only provide the en-
ergy centroid information. Together with these, the results for
166Ho from the present work are included. There is no very
clear pattern emerging from the plots in Fig. 6, as the results
generally seem to be scattered. Nevertheless, in Fig. 6(a) we
observe that the values for ESR increase until A ≈ 150, then
remain constant, and finally increase again from about ESR ≈
2.7 MeV for 160Dy to ESR ≈ 3.4 MeV for 172Yb. The results
from this work fit nicely between those for dysprosium by
Renstrøm et al. [6], erbium by Melby et al. [17], and ytterbium
by Agvaanluvsan et al. [19]. This pattern does not correspond
to what we would expect from the study by Enders et al. [12],
which describes a constant or slowly decreasing value for ESR

between 3 and 3.5 MeV. Theoretical predictions for ESR can

be obtained using the sum-rule approach [65], following the
procedure in Ref. [12] replacing the ground-state moment of
inertia with the rigid-body moment of inertia (following the
same steps as in Guttormsen et al. [21]). From this approach
a value of ESR = 2.89 MeV is found by using β2 = 0.342 as
a value for the deformation, the average of those listed for
164Dy and 168Er in Ref. [66]. This is close but lower than the
evaluated errors for all four values listed in Table II. Using the
value from the FRDM evaluation by Möller et al. [67], β2 =
0.296, we obtain an even lower value of ESR = 2.55 MeV. The
width �SR and the peak cross section σSR are also plotted in
Figs. 6(b) and 6(c), respectively. Here results are more scat-
tered, although a possibly decreasing trend could be noticed
for �SR, and a possibly increasing one could be noticed for
σSR.
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In Fig. 7 are shown the SR strengths for two different
integration intervals: Eγ = 2.0–4.0 MeV and Eγ = 0.0–
10.0 MeV) calculated by means of Eq. (20). These are in turn
plotted against the mass number A and the deformation pa-
rameter β2 retrieved from the evaluations in the Atomic Data
and Nuclear Data Tables of Ref. [66]. The data for odd nuclei
were obtained by averaging between neighboring even-even
nuclei. These values were preferred to the FRDM evaluation
by Möller et al. [67] as the latter tends to systematically
undervalue the values calculated from B(E2) experimental
values. In Fig. 7 the calculated data from 166Ho are plotted
in five solid or empty circles, where the value for method 3
is the average of (A) and (B) (see Table III). Again we can
compare to the plots in Enders et al. [12], where in Fig. 4 we
notice how BSR increases sharply at A ≈ 150 from 1 to 3.5 μ2

N ,
remains somewhat constant until A ≈ 170 when it starts to
slowly diminish. The data collected in Enders et al. [12] have
a limited integration range (2.5 to 4.0 MeV), so it is best
compared to Fig. 7(a). Although one might argue that the data
may show an increase at around A = 150, these go all the way
up to 6 μ2

N for Nd and Sm isotopes, and no flat or diminishing
pattern is observed afterwards. Figure 7(c) shows the whole
integrated SR strength, and again, although the pattern may
seem similar to Fig. 4 in Enders et al. [12], the values are much
larger. A different pattern appears when BSR is plotted against
deformation in Figs. 7(b) and 7(d). In both, and more clearly
in Fig. 7(d), we notice how the strength increases gradually
with deformation and reaches an apparent top at β2 ≈ 0.28,
before decreasing. Many of the collected data sets agree in
the value of BSR at β2 ≈ 0.34. The experimental BSR for
166Ho can be again compared to the theoretical one obtained
with the sum-rule approach, from which we obtain a value of
BSR = 7.9μ2

N using β2 = 0.342 from Ref. [66], a value above
the upper error limit for all methods. The same conclusion is

reached by using the possibly undervalued evaluated deforma-
tion β2 = 0.296 from Ref. [67], where the value BSR = 6.9μ2

N
is obtained.

V. SUMMARY

In this work the data from the 163Dy(α, pγ ) 166Ho experi-
ment were analyzed using the Oslo method, and the NLD and
GSF for 166Ho were extracted. The resulting GSF presents
typical features of a rare-earth, deformed, neutron-rich nu-
cleus, such as a pygmy resonance at Eγ ≈ 6 MeV and a peak
compatible to the M1 scissors resonance at 3 MeV. This is the
first time such a structure has been observed in an odd-odd nu-
cleus with the Oslo method, confirming previous observations
in 160Tb where the two-step cascade method was used [9]. The
SR strength has been extracted using three different methods,
and while there is a spread in the measured values, they all
yield results compatible to nuclei of similar mass number, and
even more so to nuclei of similar deformation.
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